4008-889335
数据分析
数据分析师课最常用的四种大数据分析方法你了
发布时间:2019-12-16    信息来源:未知    浏览次数:

  【摘要】在茫茫的数据发展长河中,人们慢慢掌握了数据处理的方法,其中重要的处理方法之一就是对数据的分析,所以出现了数据分析师这一处理数据的职业,有很多刚入职成为数据分析师的新人都会有数据分析的问题,今天就来讲讲四种大数据分析方法。

  本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。

  当刚涉足数据挖掘分析领域的分析师被问及,数据挖掘分析人员最重要的能力是什么时,他们给出了五花八门的答案。

  其实我想告诉他们的是,数据挖掘分析领域最重要的能力是:能够将数据转化为非专业人士也能够清楚理解的有意义的见解。

  使用一些工具来帮助大家更好的理解数据分析在挖掘数据价值方面的重要性,是十分有必要的。其中的一个工具,叫做四维分析法。

  1、四种大数据分析方法描述型分析:发生了什么?

  这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

  例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

  2、四种大数据分析方法诊断型分析:为什么会发生?

  描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

  良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

  3、四种大数据分析方法预测型分析:可能发生什么?

  预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

  预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

  在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

  4、四种大数据分析方法指令型分析:需要做什么?

  数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

  例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

  最后需要说明,每一种分析方法都对业务分析具有很大的帮助,同时也应用在数据分析的各个方面。

  以上就是有关于四种大数据分析方法的相关内容,以及相应的解析,不论你是已经入职数据分析师岗位的新人,还是打算进入数据分析岗位的小白,以上的内容都或多或少会对大家有所帮助,环球网校的小编在这里祝大家的数据分析师职业道路顺利。

  大数据分析师LEVEL ll 复习大纲篇 第六章 大数据分析之数据可视化方法

  大数据分析师LEVEL ll 复习大纲篇 第五章 大数据分析之 Spark 工具及实战(三)

  大数据分析师LEVEL ll 复习大纲篇 第五章 大数据分析之 Spark 工具及实战(二)

  大数据分析师LEVEL ll 复习大纲篇 第五章 大数据分析之 Spark 工具及实战(一)

  大数据分析师LEVEL ll 复习大纲篇 第四章 大数据分析之数据挖掘理论基础

  大数据分析师LEVEL ll 复习大纲篇 第三章 大数据分析之数据库理论及工具(一)

  大数据分析师LEVEL ll 复习大纲篇 第三章 大数据分析之数据库理论及工具(一)

分享到:
您使用的浏览器版本过低,不仅存在较多的安全漏洞,也无法完美支持最新的web技术和标准,请更新高版本浏览器!!